Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612649

RESUMO

Herpes simplex virus type 1 (HSV-1) is a lifelong pathogen characterized by asymptomatic latent infection in the trigeminal ganglia (TG), with periodic outbreaks of cold sores caused by virus reactivation in the TG and subsequent replication in the oral mucosa. While antiviral therapies can provide relief from cold sores, they are unable to eliminate HSV-1. We provide experimental results that highlight non-thermal plasma (NTP) as a new alternative therapy for HSV-1 infection that would resolve cold sores faster and reduce the establishment of latent infection in the TG. Additionally, this study is the first to explore the use of NTP as a therapy that can both treat and prevent human viral infections. The antiviral effect of NTP was investigated using an in vitro model of HSV-1 epithelial infection that involved the application of NTP from two separate devices to cell-free HSV-1, HSV-1-infected cells, and uninfected cells. It was found that NTP reduced the infectivity of cell-free HSV-1, reduced viral replication in HSV-1-infected cells, and diminished the susceptibility of uninfected cells to HSV-1 infection. This triad of antiviral mechanisms of action suggests the potential of NTP as a therapeutic agent effective against HSV-1 infection.


Assuntos
Herpes Labial , Herpes Simples , Herpesvirus Humano 1 , Infecção Latente , Humanos , Queratinócitos , Antivirais/farmacologia
2.
Malar J ; 23(1): 70, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459560

RESUMO

BACKGROUND: Birds chronically infected with avian malaria parasites often show relapses of parasitaemia after latent stages marked by absence of parasites in the peripheral circulation. These relapses are assumed to result from the activation of dormant exo-erythrocytic stages produced during secondary (post-erythrocytic) merogony of avian Plasmodium spp. Yet, there is no morphological proof of persistent or dormant tissue stages in the avian host during latent infections. This study investigated persistence of Plasmodium relictum pSGS1 in birds with latent infections during winter, with the goal to detect presumed persisting tissue stages using a highly sensitive RNAscope® in situ hybridization technology. METHODS: Fourteen domestic canaries were infected with P. relictum pSGS1 by blood-inoculation in spring, and blood films examined during the first 4 months post infection, and during winter and spring of the following year. After parasitaemia was no longer detectable, half of the birds were dissected, and tissue samples investigated for persisting tissue stages using RNAscope ISH and histology. The remaining birds were blood-checked and dissected after re-appearance of parasitaemia, and their tissues equally examined. RESULTS: Systematic examination of tissues showed no exo-erythrocytic stages in birds exhibiting latent infections by blood-film microscopy, indicating absence of dormant tissue stages in P. relictum pSGS1-infected canaries. Instead, RNAscope ISH revealed rare P. relictum blood stages in capillaries of various tissues and organs, demonstrating persistence of the parasites in the microvasculature. Birds examined after re-appearance of parasitemia showed higher numbers of P. relictum blood stages in both capillaries and larger blood vessels, indicating replication during early spring and re-appearance in the peripheral circulation. CONCLUSIONS: The findings suggest that persistence of P. relictum pSGS1 during latent infection is mediated by continuous low-level erythrocytic merogony and possibly tissue sequestration of infected blood cells. Re-appearance of parasitaemia in spring seems to result from increased erythrocytic merogony, therefore representing recrudescence and not relapse in blood-inoculated canaries. Further, the study highlights strengths and limitations of the RNAscope ISH technology for the detection of rare parasite stages in tissues, providing directions for future research on persistence and tissue sequestration of avian malaria and related haemosporidian parasites.


Assuntos
Infecção Latente , Malária Aviária , Plasmodium , Animais , Canários/parasitologia , Malária Aviária/parasitologia , Plasmodium/genética , Aves , Hibridização In Situ , Parasitemia/parasitologia , Recidiva
3.
Clin Rheumatol ; 43(5): 1521-1530, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509241

RESUMO

OBJECTIVES: Systemic lupus erythematosus (SLE) and the Epstein-Barr virus (EBV) are very closely related. This study estimated the impact of EBV infection status on clinical manifestations and disease remission in patients with SLE. METHOD: A retrospective study was performed using electronic health records of patients with SLE. The SLE disease activity index (SLEDAI-2 K) was used to assess disease activity. VCAIgM or EAIgM positive or EBVDNA copies ≥ 50 IU/mL were defined as lytic infection group, EBNA-IgG or VCAIgG-positive and who were negative for both VCAIgM and EAIgM with EBVDNA copies < 50 IU/mL were defined as the latent infection group. The endpoint (disease remission) was defined as a decrease in SLEDAI-2 K score of ≥ 1 grade or ≥ 4 points from baseline. The association between EBV infection status and disease remission was assessed using propensity score weighting and multivariable Cox regression models. RESULTS: There were 75 patients with SLE in the EBV lytic infection group and 142 patients in the latent infection group. The SLEDAI-2 K score was higher in the lytic infection group (10.00 (6.25, 16.00) vs. 8.00 (5.00, 10.00), Z = 3.96, P < 0.001). There was a significant difference in the effect of EBV lytic infection on disease remission compared to latent infection (HR 0.30, 95% CI 0.19-0.49, P < 0.001). CONCLUSIONS: Patients with SLE with lytic EBV infection have higher disease activity and take longer to achieve remission. Our study furthers our understanding of the relationship between SLE and EBV infection and may inform better treatment practices in the future.


Assuntos
Infecções por Vírus Epstein-Barr , Infecção Latente , Lúpus Eritematoso Sistêmico , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Estudos Retrospectivos , Lúpus Eritematoso Sistêmico/complicações , Infecção Latente/complicações , Anticorpos Antivirais
4.
Front Immunol ; 15: 1342455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464537

RESUMO

Epstein-Barr virus (EBV) contributes to the development of a significant subset of human lymphomas. As a herpes virus, EBV can transition between a lytic state which is required to establish infection and a latent state where a limited number of viral antigens are expressed which allows infected cells to escape immune surveillance. Three broad latency programs have been described which are defined by the expression of viral proteins RNA, with latency I being the most restrictive expressing only EBV nuclear antigen 1 (EBNA1) and EBV-encoded small RNAs (EBERs) and latency III expressing the full panel of latent viral genes including the latent membrane proteins 1 and 2 (LMP1/2), and EBNA 2, 3, and leader protein (LP) which induce a robust T-cell response. The therapeutic use of EBV-specific T-cells has advanced the treatment of EBV-associated lymphoma, however this approach is only effective against EBV-associated lymphomas that express the latency II or III program. Latency I tumors such as Burkitt lymphoma (BL) and a subset of diffuse large B-cell lymphomas (DLBCL) evade the host immune response to EBV and are resistant to EBV-specific T-cell therapies. Thus, strategies for inducing a switch from the latency I to the latency II or III program in EBV+ tumors are being investigated as mechanisms to sensitize tumors to T-cell mediated killing. Here, we review what is known about the establishment and regulation of latency in EBV infected B-cells, the role of EBV-specific T-cells in lymphoma, and strategies to convert latency I tumors to latency II/III.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Infecção Latente , Linfoma Difuso de Grandes Células B , Humanos , Herpesvirus Humano 4 , Infecções por Vírus Epstein-Barr/complicações , Latência Viral , Linfoma de Burkitt/patologia , Proteínas Virais/genética , Linfoma Difuso de Grandes Células B/patologia
5.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473916

RESUMO

Phalaenopsis orchids are one of the most popular ornamental plants. More than thirty orchid viruses have been reported, and virus-infected Phalaenopsis orchids significantly lose their commercial value. Therefore, the development of improved viral disease detection methods could be useful for quality control in orchid cultivation. In this study, we first utilized the MinION, a portable sequencing device based on Oxford Nanopore Technologies (ONT) to rapidly detect plant viruses in Phalaenopsis orchids. Nanopore sequencing revealed the presence of three plant viruses in Phalaenopsis orchids: odontoglossum ringspot virus, cymbidium mosaic virus, and nerine latent virus (NeLV). Furthermore, for the first time, we detected NeLV infection in Phalaenopsis orchids using nanopore sequencing and developed the reverse transcription-recombinase polymerase amplification (RT-RPA)-CRISPR/Cas12a method for rapid, instrument-flexible, and accurate diagnosis. The developed RT-RPA-CRISPR/Cas12a technique can confirm NeLV infection in less than 20 min and exhibits no cross-reactivity with other viruses. To determine the sensitivity of RT-RPA-CRISPR/Cas12a for NeLV, we compared it with RT-PCR using serially diluted transcripts and found a detection limit of 10 zg/µL, which is approximately 1000-fold more sensitive. Taken together, the ONT platform offers an efficient strategy for monitoring plant viral pathogens, and the RT-RPA-CRISPR/Cas12a method has great potential as a useful tool for the rapid and sensitive diagnosis of NeLV.


Assuntos
Amaryllidaceae , Infecção Latente , Sequenciamento por Nanoporos , Orchidaceae , Sistemas CRISPR-Cas , Reações Cruzadas , Recombinases
6.
Acta Trop ; 252: 107128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309609

RESUMO

Even though anthrax is a disease of antiquity that has been studied for centuries, serious concerns have been raised about our understanding of its epidemiology. Since the 1960s, we have based the epidemiology of anthrax on the results of dose-dependent experiments, especially those involving cattle at that time. In this species the experiments demonstrated that the severity of infection was dependent upon the numbers of Bacillus anthracis spores ingested. The opinion was that ingesting only a few spores would be insufficient to cause an apparent infection; any infection that resulted would be latent (i.e., unrecognized). Based on the results of these experiments, it was accepted that the ingestion of large numbers of spores was the source of infection for hundreds of anthrax outbreaks. However, many investigations of both human and animal anthrax outbreaks have failed to identify sources of large numbers of spores, suggesting that these outbreaks are only rarely a consequence of ingestion or inhalation of large quantities of spores. This opinion piece builds upon the indirect evidence previously presented in an article focused on the existence of latent infections. Much of the evidence for the existence of latent infections was predicated upon a reduction of host resistance, which revealed how latent infections could be a source of more severe forms of the infection. That is, a latent infection can be the source of a severe infection, but the cause of the severe infection is the reduced host resistance. That first article concentrated on the arguments for latent infections, while this article concentrates on the arguments for host resistance. Host resistance is virtually impossible to measure objectively in the field. To provide a subjective measure of host resistance during anthrax outbreaks, we suggest the use of the opinions of livestock owners and or their veterinary practitioners and or field workers during investigations of anthrax outbreaks. When veterinary personal work in the field they are much like field biologists. In some ways field biologists better appreciate environmental factors, population ecology and other perspectives that are of use to epidemiologists. The more diverse the information the better the epidemiology is understood. To this effect we present our personal anecdotal and theoretical ideas from our experiences as well as a collection of bibliographic observations from others'. Our conclusions are that a combination of latent infections and reduced host resistance based on the host's relationship with its environment would better explain the epidemiology of severe infections in anthrax outbreaks for which large quantities of spores have not been located. This applies especially if the area has a history of the disease and/or if necropsies have shown the presence of latent infections in otherwise normal animals in the area and/or if environmental conditions are considered stressful and include intense insect activity.


Assuntos
Antraz , Bacillus anthracis , Infecção Latente , Animais , Humanos , Bovinos , Antraz/epidemiologia , Antraz/veterinária , Surtos de Doenças/veterinária , Ecologia , Infecção Latente/epidemiologia
7.
mBio ; 15(3): e0347923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349188

RESUMO

Productive replication of herpes simplex virus (HSV) relies upon a well-ordered transcriptional cascade flowing from immediate-early (IE) to early (E) to late (L) gene products. While several virus-encoded transcriptional activators are involved in this process, IE and E gene promoters also contain multiple binding sites for the ubiquitously expressed cellular transcription factor Sp1. Sp1 has been previously implicated in activating HSV-1 gene transcription downstream of these sites, but why Sp1-binding sites are maintained in the promoters of genes activated by virus-encoded activators remains unclear. We hypothesized that Sp1 enables continued HSV-1 transcription and replication when viral transactivators are limited. We used a depletion-based approach in human foreskin fibroblasts to investigate the specific contribution of Sp1 to the initiation and progression of the HSV-1 lytic gene cascade. We found that Sp1 increased viral transcript levels, protein expression, and replication following infection with VP16- or ICP0-deficient viruses but had little to no effect on rescued viruses or during wild-type (WT) HSV-1 infection. Moreover, Sp1 promoted WT virus transcription and replication following interferon treatment of fibroblasts and thus may contribute to viral immune evasion. Interestingly, we observed reduced expression of Sp1 and Sp1-family transcription factors in differentiated sensory neurons compared to undifferentiated cells, suggesting that reduced Sp1 levels may also contribute to HSV-1 latent infection. Overall, these findings indicate that Sp1 can promote HSV-1 gene expression in the absence of key viral transactivators; thus, HSV-1 may use Sp1 to maintain its gene expression and replication under adverse conditions.IMPORTANCEHerpes simplex virus (HSV) is a common human pathogen that actively replicates in the epithelia but can persist for the lifetime of the infected host via a stable, latent infection in neurons. A key feature of the HSV replication cycle is a complex transcriptional program in which virus and host-cell factors coordinate to regulate expression of the viral gene products necessary for continued viral replication. Multiple binding sites for the cellular transcription factor Sp1 are located in the promoters of HSV-1 genes, but how Sp1 binding contributes to transcription and replication of wild-type virus is not fully understood. In this study, we identified a specific role for Sp1 in maintaining HSV-1 gene transcription under adverse conditions, as when virus-encoded transcriptional activators were absent or limited. Preservation of Sp1-binding sites in HSV-1 gene promoters may thus benefit the virus as it navigates diverse cell types and host-cell conditions during infection.


Assuntos
Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Infecção Latente , Humanos , Herpesvirus Humano 1/fisiologia , Transativadores/genética , Proteínas Imediatamente Precoces/genética , Fatores de Transcrição/metabolismo , Replicação Viral , Expressão Gênica , Regulação Viral da Expressão Gênica
8.
J Virol ; 98(2): e0176423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193709

RESUMO

Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and periodically reactivates to permit transmission, which can result in clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection, and therefore, HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. The activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required to transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during the HSV latent infection of neurons to promote reactivation but not during the initial JNK-dependent Phase I. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.IMPORTANCEThe molecular mechanisms that regulate the reactivation of herpes simplex virus-1 (HSV-1) from latent infection are unknown. The host transcription and pioneer factor c-Jun is the main target of the JNK cell stress pathway that is known to be important in exit of HSV from latency. Surprisingly, we found that c-Jun does not act with JNK during exit from latency but instead promotes the transition to full reactivation. Moreover, c-Jun and enhanced neuronal stress during initial neuronal infection promoted a more reactivation-competent form of HSV-1 latency. c-Jun, therefore, functions at multiple stages during HSV-1 latent infection of neurons to promote reactivation. Importantly, this study contributes to a growing body of evidence that de novo HSV-1 infection conditions can modulate latent infection and impact future reactivation events, raising important questions on the clinical impact of stress during initial HSV-1 acquisition on future reactivation events and consequences.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Infecção Latente , Transdução de Sinais , Humanos , Herpes Simples/metabolismo , Herpes Simples/virologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/fisiologia , Ativação Viral , Latência Viral , Animais , Camundongos
9.
J Virol ; 98(2): e0156723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38197631

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core , Herpesvirus Humano 8 , Infecção Latente , Humanos , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Humano 8/fisiologia , NF-kappa B/metabolismo , Ativação Viral , Latência Viral , Replicação Viral , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo
10.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255826

RESUMO

Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.


Assuntos
COVID-19 , Infecções por Citomegalovirus , Imunossenescência , Infecção Latente , Idoso , Humanos , Citomegalovirus , Síndrome Pós-COVID-19 Aguda , Envelhecimento
11.
J Biol Chem ; 300(1): 105526, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043797

RESUMO

Despite antiretroviral therapy (ART), chronic forms of HIV-associated neurocognitive disorders (HAND) affect an estimated 50% of individuals living with HIV, greatly impacting their quality of life. The prevailing theory of HAND progression posits that chronic inflammation arising from the activation of latent viral reservoirs leads to progressive damage in the central nervous system (CNS). Recent evidence indicates that blood-brain barrier (BBB) pericytes are capable of active HIV-1 infection; however, their latent infection has not been defined. Given their location and function, BBB pericytes are poised to be a key viral reservoir in the development of HAND. We present the first transcriptional analysis of uninfected, active, and latent human BBB pericytes, revealing distinct transcriptional phenotypes. In addition, we demonstrate that latent infection of BBB pericytes relies on AKT signaling for reservoir survival. These findings provide insight into the state of reservoir maintenance in the CNS during HIV-1 infection and provide novel targets for reservoir clearance.


Assuntos
Barreira Hematoencefálica , Reservatórios de Doenças , Infecções por HIV , HIV-1 , Infecção Latente , Pericitos , Humanos , Barreira Hematoencefálica/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/transmissão , Infecções por HIV/virologia , Infecção Latente/virologia , Pericitos/virologia , Proteínas Proto-Oncogênicas c-akt/genética , Qualidade de Vida , Latência Viral , Reservatórios de Doenças/virologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-37967947

RESUMO

BACKGROUND: To analyze the prevalence and spatial-temporal characteristics of severe fever with thrombocytopenia syndrome (SFTS), clustering mode of transmission, and the serological dynamic detection results in multiple areas in Hefei from 2015 to 2021, and to provide the basis for SFTS prevention and control. METHOD: Case data were obtained from the Chinese Disease Control and Prevention Information System. Information on the clustering outbreak was obtained from the outbreak investigation and disposal report. Population latent infection rate information was obtained from field sampling in multiple-incidence counties in 2016 and 2021 by multi-stage random sampling. Epi data3.2 and SPSS 16.0 softwares were used to perform a statistical analysis of the data on SFTS cases, and QGIS 3.26 software was used to draw the incidence map with township (street) as unit. RESULTS: The an average annual reported incidence rate of SFTS in Hefei from 2015 to 2021 was 0.65/100,000, and the case fatality rate was 9.73%. The overall prevalence of SFTS epidemics in Hefei City showed a fluctuating upward trend from 2015 to 2021 (χ2trends = 103.353, P < 0.001). Chaohu City, Feixi County, Feidong County and Lujiang County ranked the top 4 in the city in terms of average annual incidence rate. The number of epidemic-involved towns (streets) kept increasing ((χ2trend = 47.640, P = 0.000)). Co-exposure to ticks accounted for the majority of clustered outbreaks and also human-to-human outbreaks. Population-based latent infection rate surveys were conducted in four SFTS multi-incidence counties, with 385 people surveyed in 2016 and 403 people surveyed in 2021, increasing the population-based latent infection rate from 6.75% to 10.91%, just as the incidence rate increased. CONCLUSIONS: The incidence rate of SFTS in Hefei is obviously regional, with an expanding trend in the extent of the epidemic involved. Co-exposure to ticks accounted for the majority of clustered outbreaks and the latent infection rate cannot be ignored.


Assuntos
Infecção Latente , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/complicações , Febre/diagnóstico , Febre/epidemiologia , Febre/etiologia , Análise por Conglomerados , Incidência , Infecção Latente/complicações , China/epidemiologia
13.
Clin Lab ; 69(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948493

RESUMO

BACKGROUND: Due to its unique fingerprinting properties, Confocal Raman microscopy (CRM) can be used to examine the biomolecular changes of viruses invading and manipulating host cells. Recently, the biochemical changes due to the invasion and infection of B lymphocyte cells, nerve cells, and epithelial cells by Epstein-Barr virus (EBV) have been reported. However, biomolecular changes in nasopharyngeal epithelial cells that result from EBV infection are still poorly understood. METHODS: In continuation of our prior investigation of EBV infection in nasopharyngeal epithelial cells, we tried to expound on biomolecular changes in EBV-infected nasopharyngeal epithelial cells using Raman microspectroscopy. EBV has two life cycles, latent infection and lytic replication. We have established latent and lytic infection models at the cellular level. In order to understand the characteristics of the two patterns of EBV infection, we used Raman spectroscopy to identify the changes in biomolecules of EBV latent cells (CNE2, CNE2-EBV) and lytic cells (NPEC1-BMI1-CN, NPEC1-BMI1-EBV). RESULTS: During latent infection, levels of glycogen, protein, and lipid molecules in the cell increased while levels of nucleic acid and collagen molecules decreased. Molecular levels of glycogen, proteins, and nucleic acids are reduced during lytic infection. We found that molecular levels of nucleic acid decreased during two different periods of infection, whereas levels of other biomolecules showed the opposite trend. Glycogen, proteins, lipids, nucleic acids, and other molecules are associated with alterations in cellular biochemical homeostasis. These changes correspond to unique Raman spectra in infected and uninfected cells associated with specific biomolecules that have been proven. These molecules are mainly responsible for cellular processes such as cell proliferation and apoptosis. The Raman signatures of these biomolecular changes depend on the different phases of viral infection. CONCLUSIONS: Therefore, by using CRM, it is possible to discern details in the progression of EBV infection in nasopharyngeal epithelial cells at the molecular level.


Assuntos
Infecções por Vírus Epstein-Barr , Infecção Latente , Ácidos Nucleicos , Humanos , Herpesvirus Humano 4/fisiologia , Células Epiteliais/metabolismo , Infecção Latente/metabolismo , Glicogênio/metabolismo , Ácidos Nucleicos/metabolismo
14.
Microbiol Spectr ; 11(6): e0003323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962342

RESUMO

IMPORTANCE: A novel botybirnavirus, infecting the tea plant pathogen Didymella theifolia and tentatively named Didymella theifolia botybirnavirus 1 (DtBRV1), together with an additional double-stranded RNA (dsRNA), was characterized. DtBRV1 comprises two dsRNAs (1 and 2) encapsidated in isometric virions, while dsRNA3 is a satellite. The satellite represents a unique specimen since it contains a duplicated region and has high similarity to the two botybirnavirus dsRNAs, supporting the notion that it most likely originated from a deficient genomic component. The biological characteristics of DtBRV1 were further determined. With their unique molecular traits, DtBRV1 and its related dsRNA expand our understanding of virus diversity, taxonomy, and evolution.


Assuntos
Ascomicetos , Camellia sinensis , Infecção Latente , Vírus de RNA , RNA de Cadeia Dupla/genética , Filogenia , Genoma Viral , Vírus de RNA/genética , Ascomicetos/genética , Chá
15.
J Med Virol ; 95(11): e29237, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994186

RESUMO

Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, can establish latent infection in B lymphocytes and certain epithelial cells after primary infection. Under certain circumstances, EBV can enter into lytic replication. However, the regulation of EBV latent-lytic infection remains largely unclear. The important immune molecule, interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), was upregulated in EBV latently infected cells. When the lytic replication of EBV was induced, the expression of IFIT3 was further increased. In turn, IFIT3 overexpression dramatically inhibited the lytic replication of EBV, while IFIT3 knockdown facilitated EBV lytic replication. Moreover, upon the lytic induction, the ectopic IFIT3 expression promoted the activation of the interferon (IFN) pathway, including the production of IFN-stimulated genes (ISGs), IFNB1, and the phosphorylation of IFN-regulatory factor 3 (IRF3). In contrast, the depletion of IFIT3 led to decreased ISGs and IFNB1 expression. Mechanically, IFIT3 inhibited EBV lytic replication through IFN signaling. This study revealed that the host innate immune-related factor IFIT3 played an important role in regulating EBV latent-lytic homeostasis. The results implied that EBV has evolved well to utilize host factors to maintain latent infection.


Assuntos
Infecções por Vírus Epstein-Barr , Infecção Latente , Humanos , Herpesvirus Humano 4 , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferons/metabolismo , Replicação Viral/fisiologia , Ativação Viral , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
16.
J Virol ; 97(11): e0095323, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877721

RESUMO

IMPORTANCE: To our knowledge, this is the first report delineating the activation of the master antioxidant defense during EBV latency. We show that EBV-triggered reactive oxygen species production activates the Keap1-NRF2 pathway in EBV-transformed cells, and LMP1 plays a major role in this event, and the stress-related kinase TBK1 is required for NRF2 activation. Moreover, we show that the Keap1-NRF2 pathway is important for cell proliferation and EBV latency maintenance. Our findings disclose how EBV controls the balance between oxidative stress and antioxidant defense, which greatly improve our understanding of EBV latency and pathogenesis and may be leveraged to opportunities toward the improvement of therapeutic outcomes in EBV-associated diseases.


Assuntos
Antioxidantes , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Infecção Latente , Latência Viral , Humanos , Antioxidantes/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 4/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Infecção Latente/metabolismo , Infecção Latente/virologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células
17.
PLoS Pathog ; 19(10): e1011691, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847677

RESUMO

Even though gammaherpesvirus and parasitic infections are endemic in parts of the world, there is a lack of understanding about the outcome of coinfection. In humans, coinfections usually occur sequentially, with fluctuating order and timing in different hosts. However, experimental studies in mice generally do not address the variables of order and timing of coinfections. We sought to examine the variable of coinfection order in a system of gammaherpesvirus-helminth coinfection. Our previous work demonstrated that infection with the intestinal parasite, Heligmosomoides polygyrus, induced transient reactivation from latency of murine gammaherpesvirus-68 (MHV68). In this report, we reverse the order of coinfection, infecting with H. polygyrus first, followed by MHV68, and examined the effects of preexisting parasite infection on MHV68 acute and latent infection. We found that preexisting parasite infection increased the propensity of MHV68 to reactivate from latency. However, when we examined the mechanism for reactivation, we found that preexisting parasite infection increased the ability of MHV68 to reactivate in a vitamin A dependent manner, a distinct mechanism to what we found previously with parasite-induced reactivation after latency establishment. We determined that H. polygyrus infection increased both acute and latent MHV68 infection in a population of tissue resident macrophages, called large peritoneal macrophages. We demonstrate that this population of macrophages and vitamin A are required for increased acute and latent infection during parasite coinfection.


Assuntos
Coinfecção , Gammaherpesvirinae , Helmintos , Infecções por Herpesviridae , Infecção Latente , Doenças Parasitárias , Humanos , Animais , Camundongos , Ativação Viral , Latência Viral/fisiologia , Vitamina A , Linfócitos B , Infecções por Herpesviridae/complicações , Gammaherpesvirinae/fisiologia , Macrófagos , Camundongos Endogâmicos C57BL
18.
Microb Pathog ; 184: 106358, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716623

RESUMO

OBJECTIVE: To establish a murine model of Talaromyces marneffei (T. marneffei) latent infection and reactivation, providing a foundation for exploring the molecular mechanisms underlying disease relapse. METHODS: BALB/c mice were tail vein injected with T. marneffei at 0 days post-infection (dpi) and treated with cyclophosphamide (CTX) intraperitoneally every four days, starting from 21 dpi or 42 dpi. Mice were observed for body weight changes, liver and spleen indices, histological characteristics of liver and spleen, fungal load detection in liver and spleen, and Mp1p qualitation in liver and spleen to assess T. marneffei infection severity. RESULTS: T. marneffei-infected mice exhibited a trend of initial weight loss followed by recovery and a subsequent decrease in weight after CTX injection throughout the observation period. Liver and spleen indices, as well as tissue damage, significantly increased during infection but later returned to normal levels, with a gradual rise observed after immunosuppression. Fungal load analysis revealed positive T. marneffei cultures in the liver and spleen at 7 dpi and 14 dpi, followed by negative T. marneffei cultures from 21 dpi until day 21 post-immunosuppression (42 dpi or 63 dpi); however, the spleen remained T. marneffei-cultured negative, consistent with the trend observed in Mp1p detection results. CONCLUSION: A latent infection and reactivation model of T. marneffei in mice was successfully established, with the liver likely serving as a key site for latent T. marneffei.


Assuntos
Infecção Latente , Micoses , Talaromyces , Animais , Camundongos , Modelos Animais de Doenças , Micoses/microbiologia
19.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686094

RESUMO

Phytopathogenic microorganisms, being able to cause plant diseases, usually interact with hosts asymptomatically, resulting in the development of latent infections. Knowledge of the mechanisms that trigger a switch from latent to typical, symptomatic infection is of great importance from the perspectives of both fundamental science and disease management. No studies to date have compared, at the systemic molecular level, the physiological portraits of plants when different infection types (typical and latent) are developed. The only phytopathogenic bacterium for which latent infections were not only widely described but also at least fluently characterized at the molecular level is Pectobacterium atrosepticum (Pba). The present study aimed at the comparison of plant transcriptome responses during typical and latent infections caused by Pba in order to identify and then experimentally verify the key molecular players that act as switchers, turning peaceful plant-Pba coexistence into a typical infection. Based on RNA-Seq, we predicted plant cell wall-, secondary metabolism-, and phytohormone-related genes whose products contributed to the development of the disease or provided asymptomatic plant-Pba interactions. By treatment tests, we confirmed that a switch from latent to typical Pba-caused infection is determined by the plant susceptible responses mediated by the joint action of ethylene and jasmonates.


Assuntos
Infecção Latente , Pectobacterium , Pectobacterium/genética , Membrana Celular
20.
Viruses ; 15(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37766281

RESUMO

Human cytomegalovirus (HCMV) infection can lead to either lytic or latent infection, which is dependent on the regulation of the viral major immediate early promoter (MIEP). Suppression of the MIEP is a pre-requisite for latency and is driven by repressive epigenetic modifications at the MIEP during latent infection. However, other viral genes are expressed during latency and this is correlated with activatory epigenetic modifications at latent gene promoters. Yet the molecular basis of the differential regulation of latent and lytic gene expression by epigenetics is unclear. LUNA, a latent viral transcript, has been suggested to be important for HCMV latency and has also been shown to be important for efficient reactivation likely through its known deSUMOylase activity. Intriguingly, we and others have also observed that LUNA enhances latency-associated expression of the viral UL138 gene. Here, we show that in the absence of LUNA, the expression of multiple latency-associated transcripts is reduced during latent infection, which is correlated with a lack of activatory marks at their promoters. Interestingly, we also show that LUNA interacts with the hematopoietic transcription factor GATA-2, which has previously been shown to bind to a number of latency-associated gene promoters, and that this interaction is dependent on the deSUMOylase domain of LUNA. Finally, we show that the deSUMOylase activity of LUNA is required for the establishment and/or maintenance of an open chromatin configuration around latency-associated gene promoters. As such, LUNA plays a key role in efficient latency-associated viral gene expression and carriage of viral genome during latent carriage.


Assuntos
Citomegalovirus , Infecção Latente , Humanos , Citomegalovirus/genética , Cromatina/genética , Epigênese Genética , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...